
J Intell Robot Syst
DOI 10.1007/s10846-012-9691-8

A Reference Software Architecture to Support Unmanned
Aircraft Integration in the National Airspace System

Curtis W. Heisey · Adam G. Hendrickson · Barbara J. Chludzinski ·
Rodney E. Cole · Mark Ford · Larry Herbek · Magnus Ljungberg ·
Zakir Magdum · D. Marquis · Alexander Mezhirov · John L. Pennell ·
Ted A. Roe · Andrew J. Weinert

Received: 13 June 2012 / Accepted: 4 July 2012
© The Author(s) 2012. This article is published with open access at SpringerLink.com

Abstract This paper outlines an architecture that
provides data and software services to enable a
set of Unmanned Aircraft (UA) platforms to op-
erate in a wide range of air domains which may
include terminal, en route, oceanic and tactical.
The architecture allows a collection of command,
control, situational awareness, conflict detection
and avoidance, and data management elements
to be composed in order to meet different
requirement sets as defined by specific UA plat-

This work is sponsored by U.S. Army, PM-UAS,
Product Directorate - Unmanned Systems Airspace
Integration Concepts under Air Force Contract
FA-8721-05-C-0002. Opinions, interpretations,
conclusions and recommendations are those of the
authors and are not necessarily endorsed by the
United States Government. Approved for public
release, distribution is unlimited.

C. W. Heisey (B) · B. J. Chludzinski ·
R. E. Cole · M. Ford · M. Ljungberg · Z. Magdum ·
D. Marquis · A. Mezhirov · T. A. Roe · A. J. Weinert
MIT Lincoln Laboratory, 244 Wood Street,
Lexington, MA 02420, USA
e-mail: heisey@ll.mit.edu

A. G. Hendrickson · L. Herbek · J. L. Pennell
Department of the Army, Project Manager’s Office:
Unmanned Aircraft Systems (PM UAS), Unmanned
Systems Airspace Integration Concepts (USAIC),
Redstone Arsenal, AL, USA

A. G. Hendrickson
e-mail: Adam.Hendrickson@PeoAvn.Army.Mil

forms, users, and operating regimes. The archi-
tecture discussed is based on a Service Oriented
Architecture (SOA) with open standards on the
interfaces between elements. Services may include
common situational awareness, sense and avoid,
weather, data management and flight plan infor-
mation. Service contracts specify quality of ser-
vice, interface specifications, service description
metadata, security provisions, and governance.
Pieces of the architecture have been implemented
by MIT Lincoln Laboratory in the form of a Sense
and Avoid (SAA) testbed that provides some of
the core services. This paper describes the general
architecture and a SAA testbed implementation
that begins to realize that architecture and quan-
tifies the benefits. The proposed architecture is
not directed at a specific program but is intended
to provide guidance and offer architectural best
practices.

Keywords Unmanned Air vehicle · Sense and
Avoid · Service Oriented Architecture · Testbed ·
Reference architecture

1 Introduction

The combination of a rapid rise in the number
of heterogeneous Unmanned Aircraft (UA) and
their use in both military and homeland protection
roles has resulted in a need to have UA operate

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
A Reference Software Architecture to Support Unmanned Aircraft
Integration in the National Airspace System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of the Army, Project Manager Office,Unmanned Aircraft
Systems (PM UAS), Unmanned,Systems Airspace Integration Concepts
(USAIC),,Redstone Arsenal,AL,35808

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Journal of Intelligent and Robotic Systems, Published Online, Aug 2, 2012

14. ABSTRACT
This paper outlines an architecture that provides data and software services to enable a set of Unmanned
Aircraft (UA) platforms to operate in a wide range of air domains which may include terminal, en route,
oceanic and tactical. The architecture allows a collection of command,control, situational awareness,
conflict detection and avoidance, and data management elements to be composed in order to meet different
requirement sets as defined by specific UA platforms, users, and operating regimes. The architecture
discussed is based on a Service Oriented Architecture (SOA) with open standards on the interfaces
between elements. Services may include common situational awareness, sense and avoid,weather, data
management and flight plan information. Service contracts specify quality of service,interface
specifications, service description metadata, security provisions, and governance. Pieces of the architecture
have been implemented by MIT Lincoln Laboratory in the form of a Sense and Avoid (SAA) testbed that
provides some of the core services. This paper describes the general architecture and a SAA testbed
implementation that begins to realize that architecture and quantifies the benefits. The proposed
architecture is not directed at a specific program but is intended to provide guidance and offer
architectural best practices.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

J Intell Robot Syst

within the National Airspace System (NAS). Ap-
plication of Service Oriented Architecture (SOA)
to the control of UAs is a risk lowering path
to ensuring technical interoperability, manageable
governance, acceptable safety and security, and
future extensibility. This paper discusses the ap-
plication of SOAs to Unmanned Aircraft Systems
(UAS) and the necessary components/processes
to realize that capability.

The principal required UAS support functions
provide for (a) command and control of the UAs
including their payloads, (b) separation assurance
to deconflict airspace with respect to other air-
craft, and (c) payload data dissemination. UA
separation presents a number of challenges be-
cause the operator may not have the same aware-
ness as a pilot in a manned aircraft. Technical
solutions require low latency data delivery with
high reliability. The SOA discussed herein accom-
modates different mixes of surveillance sources,
multiple UA platform types, multiple user types,
and different applications and air domains.

This paper is divided as follows: Section 2 pro-
vides background. Section 3 details the reference
architecture design. Section 4 describes the ser-
vices in detail. Section 5 describes the Sense and
Avoid (SAA) testbed implementation of core,
mediation, and domain-specific services. Section 6
summarizes the evaluation of the SAA prototype
testbed performance. Section 7 draws conclusions
and describes future work. The contribution of
this work is to outline a unique set of technol-
ogy choices for implementing SOA in a high-
performance, low-latency, safety critical problem
domain.

2 Background

In order to accommodate UAS in the NAS the
foremost challenge is to provide SAA capability.
An excellent way to provide SAA in the near-term
is by leveraging ground based surveillance. This is
called Ground Based Sense and Avoid (GBSAA),
and the US Army is using this approach. Airborne
Based Sense and Avoid (ABSAA) is a solution
in which SAA sensors are located on board the
UA. In the long term, the SAA solution will likely
involve a hybrid of GBSAA and ABSAA [1].

In addition to SAA, several other components,
such as flight plan information, weather, and com-
mand and control are needed to integrate UAS
in the NAS. These information components can
be delivered as SOA services. For example, FAA
SWIM has implemented a SOA with a registry
and security mechanism to provide weather, flight
plan and aeronautical information. SWIM plans to
provide surveillance, 4D trajectory and other ser-
vices [2]. The Net-Centric Enterprise Solutions for
Interoperability (NESI) provides guidance and
best practices for SOA design [61]. The UAS Con-
trol Segment (UCS) architecture [3] is developing
standards and architecture for ground stations,
which this effort will leverage. At the moment
there is a broad collection of radars, an assortment
of ground control stations, and few standards ex-
ist. The combination of these factors limits inter-
operability. We are taking the approach of a SOA
reference architecture to knit all of this together.

A SOA presents a number of features that ease
UA operations and NAS technical integration:

– Providing services to ingest a mix of data
sources and to offer a consistent view of that
data across multiple disparate consumers via
governance by contracts that specify interface,
protocol, quality of service and security.

– Allowing service elements to evolve some-
what independently, subject to integration
testing and re-certification.

– Facilitating interoperability between organi-
zations in a loosely coupled fashion, subject to
mandate and authorization to connect.

– Enabling unanticipated users. Consumers can
subscribe to services they are authorized to
receive as needed and not have any knowledge
of or impact on other users.

The goals of an open SOA are a set of “il-
ities”: modularity and composability, scalability
and extendibility, configurability and adaptability,
interoperability and reusability, and upgradeabil-
ity and maintainability [4–6].

Lincoln Laboratory has implemented projects
involving pre-SOA [7] and SOA for near real-
time applications. These include the Radar Open
System Architecture (ROSA) [8], Corridor Inte-
grated Weather System (CIWS) [9], Tower Flight

J Intell Robot Syst

Data Manager (TDFM) [10], Extended Space
Sensors Architecture [11], and Lincoln Distrib-
uted Disaster Response System (LDDRS) [12].
Some other non-Lincoln Laboratory real-time
SOA efforts are presented in [13–15] that go into
detail on middleware and real-time scheduling.

This paper describes an architecture that ac-
commodates the diversity in platforms and mis-
sions presented by UA. The architecture supports
multiple vendor products, data sources (publish-
ers) and data sinks (subscribers). Open source el-
ements are included, which allow “best of breed”
solutions as well. UA diversity needs led us to
choose an Open Standards Architecture (OSA)
for vendor neutrality and SOA for modular ele-
ments. Features also include include Multi-Level
Security (MLS) options to partition data horizon-
tally between organizations and vertically within
an agency. Because the SOA is software based,
flow of data can be tailored on the basis of need,
classification and volume restrictions. To vet the
design, we have implemented key components in
a SOA testbed.

3 Software Architecture Design

The Lincoln Laboratory development team chose
to adopt a SOA approach for the reference archi-
tecture. This will inform and guide GBSAA
architecture options for the Army. A reference ar-
chitecture provides a template solution that guides
specific implementations [16]. A service is defined
to have three characteristics [17].

– A service is a self-contained set of functionali-
ties with well defined interfaces.

– Services are loosely coupled, meaning depen-
dencies between subsystems are minimized
and interfaces are well-defined and evolve
iteratively.

– Services are interoperable. A set of services
is associated with a service bus which is
an infrastructure that enables interoperability
between distributed system elements. The ser-
vice bus contains a message bus as well as core
services.

For this effort, services are standards-based and
open. We interpret a “service” to include both re-

quest/response services and streaming data-feeds.
We do not restrict SOA to Simple Object Ac-
cess Protocol (SOAP)/Web Services Description
Language (WSDL) but incorporate protocols rel-
evant to high-throughput event driven real-time
systems.

Service providers register their services in a
service registry. This registry includes metadata
about the content of the service. A consumer
searches the registry to discover the service of
interest. A key concept of SOA is the service
contract, which is a formal specification of the
service interface, quality of service, and gover-
nance. The registry returns the service endpoint of
the provider. The consumer can then bind to the
service through a specified protocol.

Figure 1 shows a notional diagram of the ser-
vices the reference architecture needs to support.
The basic architecture incorporates various sensor
data sources publishing data to a bus and con-
sumers subscribing to the sources. A few services
such as the SAA service subscribe to data and
produce their own output data products. Some
services are request response as well.

These services are organized into a layered de-
sign according to performance requirement. Lay-
ers range from real-time (tactical services), to near
real-time (mediators, decision support tools, fed-
erated services) to internet time (business, strate-
gic services). The latter are not considered here.
At the real-time layer are streaming surveillance
data providers and legacy systems. The real-time
layer includes a tactical message bus to provide
low latency high-throughput surveillance data to
a correlator-tracker and decision support tools.
The near real-time layer is the enterprise ser-
vice bus that is exposed for external SOA con-
sumers.

This architecture utilizes two message buses to
provide message delivery and quality of service
for both tactical (real-time) and enterprise (near
real-time) domains, reflecting the different per-
formance requirements of each. Tactical services
such as track correlation and camera queuing re-
quire real-time latencies of several milliseconds
or less. Tactical messages are delivered in bi-
nary format over User Datagram Protocol (UDP).
The Enterprise Service Bus (ESB) provides mes-
sages with latencies of tens of milliseconds. ESB

J Intell Robot Syst

Fig. 1 Notional view of possible services in the reference architecture, subject to interoperablity requirements, authoriza-
tion, and certification

messages are delivered in Extensible Markup
Language (XML) or in a binary format. In the
reference architecture, data models are indepen-
dent of implementation, and bindings to XML, In-
terface Definition Language (IDL), or JavaScript
Object Notation (JSON) [18] are possible, for
example. Data Distribution Service (DDS) over
Ethernet can meet the requirements of both
buses by using different Quality of Service (QoS)
settings.

Table 1 shows the open standards used in the
reference architecture. Existing open standards
are used where possible. Binary formats including
IDL are used for tactical messages. IDL and XML
are used for ESB messages. XML provides a self-
describing, extensible message format, but IDL is
a more efficient for data movement. Metadata in
the message facilitates ease of integration and pro-
motes interoperability. Open standards can pre-
vent vendor lock in and can lower lifecycle costs
[4, 5]. A Navy program has successfully created
an open architecture acquisition process [19] and-
has created a set of metrics to evaluate openness
of a software system [20]. Messages can also be
represented in multiple formats simultaneously,

for example XML and IDL, as we recognize that
no single format is going to meet all customer
requirements, although the latter is preferred.

To manage the service implementation life-
cycle, we propose that a governance board will
be responsible for provisioning and maintenance
of services. A process will be established for
the full service lifecycle from specification to im-
plementation. New services will be specified by
a service specification template. The template
captures service name, description, QoS require-
ments, operation signatures and data models.
This service metadata can be placed in a reg-
istry. The board can certify services for standards
compliance, performance, and security. The pro-
posed board will deploy the services and desig-
nate a party responsible for hosting the service
and policies for use and maintenance. The board
will be responsible for enforcing Service Leve-
lAgreements (SLA)s that guarantee QoS. The
governance board could establish standards com-
mittees for necessary standards that do not
currently exist. The board would contain mem-
bers of interested stakeholders and would ideally
be chaired by a neutral party. National Informa-

J Intell Robot Syst

Table 1 DODAF TV-1 partial list of open messaging standards used in the reference architecture

Service area Technical services Standards Standard description

Core Command and control, UCI, OGS SPS Unmanned Aerial Systems Command
Resource tasking and Control Initiative [21], Open

Geospatial Consortium Sensor
Planning Service [22]

Algorithm advisory New standard A proposed standard
Track internal Army GBSAA A comprehensive track schema

defined in IDL to be
replaced by evolving standards

GCS internal UCS UAS Control Segment (UCS)
Architecture [23]

Track consumer CoT Cursor on Target [24]
Track consumer CAT48 Consumer ASTERIX CAT48 [25]
Flight plan Flight Object XML Forthcoming standard from FOWG

[26] or EUROCONTROL
Telemetry STANAG 4586 NATO standard [27]
Weather WXXM Weather Information Exchange Model [28]
Aeronautical information AIXM Aeronautical Information Exchange

Model [29]
Health and integrity CIM Common Information Model [30]

Modeling and Simulated aircraft DIS IEEE Std 1278.2-1995IEEE
simulation Distributed Interactive System

tion Exchange Model (NIEM) [31] and OpenMPI
[32] are examples of standards governed in this
manner.

System creators of production deployments
may need to be comply to security certification
using National Institute of Standards and Technol-
ogy (NIST), National Information Assurance Cer-
tification and Accreditation Process (NIACAP),
or Defense Information Systems Certification and
Accreditation (DISCAP) methodologies.

SOA systems present a number of safety cer-
tification challenges because of the potentially dy-
namic nature of services, and existing processes
will need to evolve. An overview of a process
for certification and accreditation of software sys-
tems is given in [33]. The FAA has proposed
additional software processes for safety critical-
systems [34]. Issues and possible ways forward
for certification of SOA systems are discussed
in [35–37]. Department of Defense Architecture
Framework (DODAF) is used to document many
DoD software programs [38], and we suggest aug-
mentation with additional SOA artifacts and a
service specification template by the Everware-
CBDI framework [39–41], which serves as the
basis for a template in use by DHS [42]. Ar-
chitects of safety critical systems are increasingly

using Architecture Analysis and Design Language
(AADL) to capture the architecture of safety crit-
ical systems [43].

Discussions on process modifications for SOA
are ongoing [36, 37]. The specification of a ser-
vice using a service specification template is es-
sential. The service specification template details
interface, quality of service contracts, governance
policy, priority, and other service details. Service
deployments can evolve independently of the ar-
chitecture once the template is specified because
a replacement element could be certified against
the conditions in the template.

4 Description of SOA Components

Services fall into several categories. The fabric of
the SOA, the general infrastructure, includes se-
curity, registries, search, messaging, and archival
services. These core services are shared by many
Lincoln Laboratory SOA projects. On the other
end of the spectrum are domain-specific services,
which are shared between projects within a do-
main. Examples of services unique to air domain
include track association, flight plan association

J Intell Robot Syst

and situation displays. Additionally, there are ser-
vices that mediate between different formats as
well as different protocols. Section 4.1 describes
core services. Section 4.2 describes mediation ser-
vices, and Section 4.3 describes domain services in
the reference architecture.

4.1 Core Services and the Net-Centric Toolkit

The Net-Centric Toolkit (NCT) [44] is a collection
of interoperable services intended to support net
centric systems.

4.1.1 High-Performance Tactical Messaging Bus

The reference architecture employs a high-
performance messaging middleware, which uti-
lizes a publish/ subscribe pattern that allows
decoupling of producers and consumers. The NCT
Data Transfer Service (DTS) provides an abstrac-
tion layer separating the messaging implementa-
tion from the interface. DTS contains both a data
plane (data content) and a control plane (e.g.,
configuration, management, status, and discov-
ery). The DTS is based on Apache Camel, and the
middleware protocol can be switched by changing
a text adaption file. The SOA uses Extensible
Messaging and Presence Protocol (XMPP), Ad-
vanced Message Queuing Protocol (AMQP), Java
Messaging Service (JMS), Data Distribution Ser-
vice (DDS), and Service Mix, as well as UDP, and
can support multiple protocols simultaneously.

4.1.2 Registration Service

The reference architecture includes registries
where services and datafeeds can be registered
and discovered. The registry describes the end-
point where the service resides, data formats,
schemas, metadata description, quality of service
delivery, and can provide an Interface Control
Document (ICD). The Net-Centric Enterprise
Services (NCES) [45] service registration is based
on standard Universal Description Discovery and
Integration (UDDI) with additions for Repre-
sentational State Transfer (REST)-based services
[46].

Datafeeds can also be registered. MIT
Lincoln Laboratory is developing a semantics-

based registry suitable for datafeeds. The registry
provides information on formats of data feeds and
an ontology that gives the definitions of the meta-
data items. The reference architecture provides
a semantic ontology for encoding metadata in
web service description language such as Web
Ontology Language (OWL). The SPARQL
Protocol and RDF Query Language (SPARQL)
query language [47, 48] is used for matching and
lookup of datafeeds.

4.1.3 Resource Brokering Framework

The resource broker is a collection of services
that decouple information consumers from in-
formation providers. The broker performs a dy-
namic composition of information resources into
processing chains based on a user’s request for
data [49, 50]. Reasoning over the semantic de-
scriptions of resources enables this composition.
These descriptions include annotations on the in-
puts, outputs, capabilities, and characteristics of
a resource. The term “resource” is an abstract
concept and may represent a sensor, algorithm,
or even a human analyst. Each resource provides
a standard management interface for tasking.
The tasking interface is based on Open Geospa-
tial Consortium (OGC) Sensor Planning Service
(SPS) [22].

4.1.4 Federated Search Service

The federated search service is a part of the
NCES model. This service enables system wide
queries with good performance characteristics.
Archived data needs to be tagged with open stan-
dard metadata such as DoD Discovery Metadata
Specification (DDMS) with extensions [51]. Each
searchable repository registers a search provider
that will search and return the metadata of items
that match a search request.

4.1.5 Security

The ability to identify individuals is fundamen-
tal to a security posture. Certificates in a Public
Key Infrastructure (PKI) are widely used for this.
Once subjects are authenticated, they can be al-
lowed to access information resources. There are

J Intell Robot Syst

two dominant methods used today, Role Based
Access Control (RBAC) and Attribute-Based Ac-
cess Control (ABAC.) In RBAC, subjects are al-
lowed access if they belong to a pre-defined group
of users. ABAC, on the other hand, allows access
if the subject possesses a particular attribute, e.g.,
clearance level. A security posture needs to be
restrictive enough to prevent unauthorized use,
yet exhibit some flexibility to allow access to au-
thorized users. In an effective net-centric environ-
ment, access is allowed to the unanticipated user
for the unanticipated use, which in this case, could
be an additional GCS.

Cross-Domain Security (CDS) systems refer
to the hardware and software that transfers data
between different classification domains. In some
cases these CDS systems are one-way in nature,
allowing data to only stream in one direction, typ-
ically from a lower classification level to a higher
level.

Bi-directional CDS systems can also be used
when moving data from higher to lower levels
of classification where the data needs to be in-
spected to ensure that higher classified data is not
let through. There are a variety of approaches
for deep message inspection, including manual
inspection of data objects like images, rule-based
text matching, and security markup on the mes-
sage. A commonly used markup scheme for XML
data is IC-ISM [31]. Although SOA provides
mechanisms for data transfer between domains
and organizations, specific implementations and
policy would have to be considered on a case by
case basis.

4.1.6 Health and Integrity Framework
and Auditing

The health and integrity framework provides a set
of services and adapters to enable monitoring of
the health and status of all components within the
architecture. The framework consists of a com-
mon status bus on which service components pub-
lish their availability, performance metrics, and
management endpoint information. The format
of these messages is defined by the Common In-
formation Model (CIM) [30]. If services do not
support this standard, their existing status mes-
sages can be mapped to the CIM schema using an

adapter. If a service component does not provide
any status messages it is still possible to provide a
message to advertise the components availability
by hooking into its lifecycle events through its
container.

The health and integrity messages published
include availability, heartbeats, performance met-
rics, inventory descriptions, prognostics, and
alerts. Different consumers such as an alerting
mechanism, archive, or user display can process
these messages. In addition to alerts provided
by service components, custom agents can be
deployed to monitor components or processing
chains and provide alerts when service level agree-
ments are in jeopardy. Additionally, a traditional
monitoring tool such as Hyperic or OpenNMS can
optionally be bundled as an agent on the system
to provide a visual monitoring and management
interface.

Audit services are provided for security mon-
itoring and troubleshooting. All services can log
start-up and shutdown, access, and configuration
changes to a central auditing facility. In addition,
the audit service consumes health and integrity
messages from a status topic on the ESB. Cer-
tification and Authorization standards such as
NIST 800-53 provide a complete set of auditing
requirements.

4.1.7 Archive/Playback Service

The archive service on the tactical bus provides
a high data rate store of raw camera and track
data. Both buses (tactical and ESB) will store
processed data products, such as alerts, decimated
track data, video snippets, and snapshots. This will
allow event reconstruction and playback.

The archive/playback service can record large
volumes of messages and faithfully play them back
as they were recorded in terms of content as well
as time delay among them. The service allows one
to group multiple topics and tag the recording
scenario with metadata. The archive/playback ser-
vice provides functionality to select messages for
playback on the basis of a time window and pro-
vides filtering by topics. Also, users can playback
messages at slower or faster rate than the rate
they were recorded. The service provides func-
tionality to transform messages during playback

J Intell Robot Syst

to alter timestamps and other data as needed.
The service can receive and send messages using
multiple protocols such as Joint User Messaging
(JUM), ActiveMQ, Transmission Control Proto-
col/Internet Protocol (TCP/IP) and many others.
Messages recorded using one protocol can be
played back with different protocol. The service
provides functionality to schedule recording or
playback, and users can create different recording
scenarios on a daily basis. One can import and
export messages from the service. Also, users can
validate messages against a schema. Additionally,
there is some functionality to view and analyze
message content.

4.1.8 Composable Applications

In addition to composing services into processing
chains via the resource broker, services can be
explicitly composed using a Graphical User In-
terface (GUI) tool. Services can be encapsulated
by plug-ins that enable them to be discovered and
connected dynamically to create an application. In
some cases it may be possible to expedite the de-
velopment process and enable domain specialists
to directly create solutions. Plug-ins encapsulate
connectivity rules governing how heterogeneous
service endpoints can be connected and contain
metadata and semantic information to locate ser-
vices. Compositions in turn can be registered as
new services and reused. We have prototyped an
initial capability using the Kepler Tool framework
[52, 53].

4.2 SOA Sidecars and Mediation Services

MIT Lincoln Laboratory has for many years built
small computer systems known as sidecars that
can be used to connect sensors (initially) to a
network to allow experimental algorithms access
to stove-piped sensor data in real time. The idea
is to attach a sidecar “online but not inline” to not
disturb the host or legacy system.

As time and community acceptance of this
technique has advanced, bidirectional sidecars are
now being developed, allowing data to flow from
the legacy system to the sidecar and tasking to
flow from the sidecar to the legacy system.

A sidecar has two principal internal com-
ponents, the Sensor Adapter and the Network
Adapter. The Sensor Adaptor provides the in-
terface to the legacy or proprietary system that
encapsulates the proprietary format and contains
a format converter. The Network Adapter out-
puts the common data format and provides the
interface to the SOA bus. The sidecar does any
necessary protocol conversion as well. Insulating
proprietary formats allows independent develop-
ment of SOA components by different vendors,
while allowing a vendor to retain its intellectual
property and competitive value.

An example of a sidecar is a service compo-
nent that wraps a proprietary system element or
legacy sensor. The wrapper mediates interactions
between the element and the larger system. The
purpose of mediation is to facilitate a plug-and-
play capability for that element allowing diversity
and multiplicity. Internal mediation components
that perform information transformations and
functionality supplementation will be built, as
needed. The sidecar publishes messages on the
ESB in XML. The schemas are a combination
of DoD and Open Geospatial Consortium OGC
based open and open standard extensions if nec-
essary. On the ESB side, the same schemas will be
used. The published update rate can be optionally
decimated.

The Net-Centric Mediator Framework pro-
vides a framework on which new mediators can
be quickly deployed. Rapid creation of new me-
diators is possible since the developer can focus
on the actual transformation or processing chain
while leveraging the application lifecycle, manage-
ment, and monitoring capabilities of the frame-
work. The framework provides a container for one
or more processing chains that consume and trans-
form message payloads. The framework also pro-
vides for the management of mediators through
standard Java Management Extensions (JMX)
interfaces. A monitoring Application Program-
ming Interface (API) provides for the gathering
and reporting of performance related metrics such
as number of messages processed, mean transfor-
mation times, and other statistical metrics such
as standard deviation. The mediation framework
also supports more complex behaviors such as

J Intell Robot Syst

message enrichment or decimation through addi-
tional configuration in the processing chain.

4.3 Services Specific to Air Domain

4.3.1 Track Fusion Service and Track
Classif ication Service

The track fusion service uses a correlator-tracker
to fuse reports from multiple radars into a single
air picture. An adjunct classification service dis-
criminates between aircraft and non-aircraft. Both
are placed in the core services level to achieve
low latency, which is necessary for queuing of
cameras.

4.3.2 Flight Association Service

The flight plan sidecar takes FAA flight plans
in Common Message Format (CMS) or other
format and converts them into an XML flight
message, which will be replaced by a forthcoming
schema by the FAA Flight Object Working Group
(FOWG) [26] or EUROCONTROL. The sidecar
also associates tracks to their respective flight plan
via the mode3A code assignment in the filed flight
plan, e.g., mode3A 4031 transponder is aircraft
with aircraft flight id AAA246.

4.3.3 Track Association Service and Common
Operating Picture

The track association service receives tracks from
multiple stations, correlates them, assigns a sys-
tem wide unique identifier and publishes that
identifier back to the stations. Messaging occurs
via track brokers on the ESB. Some track data
in overlapping edge regions may have to be ex-
changed between stations on the tactical bus. Use
of federation enables systems to be scaled through
distributed brokers.

A Common Operating Picture provides uni-
form situation awareness of air traffic for all con-
sumers. It is important for all consumers to have
the same view of the air picture, including a uni-
versal track number, if the air picture comes from
multiple sources.

4.3.4 Sense and Awareness (SAA) Service

The SAA service will be described under a sepa-
rate forthcoming paper.

5 MIT Lincoln Laboratory SOA Testbed
Implementation

Lincoln Laboratory has led a number of SOA
open architecture initiatives. This project has
leveraged existing services in the reference archi-
tecture from these projects through software reuse
and has developed some new services. Figure 2
shows the services in the testbed. We describe the
implementation and evaluate the performance of
these services as a Proof of Concept. We have in-
tegrated both Commercial Off the Shelf (COTS)
trackers via a mediator to convert proprietary
format into open format, and in-house trackers
into the testbed.

Several key lessons have been learned in pre-
vious SOA initiatives. The NCT is a common set
of service components that can be leveraged by
many projects. Developing a sidecar Software De-
velopment Kit (SDK) and ICD that enables rapid
creation of a sidecar in such a way to meet low
latency and high-throughput requirements can re-
duce software development cost. We have learned
how to create a high-performance message bus to
enable SOA concepts. We have learned several
important lessons for creating data models for
open interfaces. This background has led to the
current implementation.

Without costly flight tests or complex demon-
strations, a SOA is being used to test SAA and
NAS integration system components quickly. Fur-
thermore, a SOA overcomes the challenge of
producing repeatable scenarios by controlling the
environment in which SAA and NAS integration
systems are tested. For example, two ground sur-
veillance sources can be compared by using the
same tracker, UA platform, Concept of Opera-
tions (CONOPS), and environment conditions. A
SOA is used to help determine requirements for
surveillance and weather sources, CONOPS, al-
gorithm performance, communications, operating
regions, and more.

J Intell Robot Syst

Fig. 2 MIT Lincoln Laboratory SOA Testbed. Organic
sensors are existing surveillance radars, and Inorganic Sen-
sors are new sensors dedicated to GBSAA. COTS displays

are Commercial Off the Shelf products and may require
mediators (not shown) for integration into the testbed

An SAA testbed can also facilitate system de-
sign and can be used for the SAA system cer-
tification process. It is desirable to test candidate
SAA algorithms with surveillance from real air
traffic. For repeatability and to reduce mission
cost, a testbed enables the injection of simulated
air tracks into a UA air surveillance picture in
order to develop and test algorithms.

Additionally, the system allows simultaneous
evaluation of multiple algorithms against a com-
mon scenario. This requires coordinated and time
synchronized playback of all data items for re-
peatability, and it would be desirable to play
back in faster than real-time. The system adds
the ability to fly simulated UA or intruder air-
craft. The system supports the ability to hold
an algorithm constant and evaluate the effect
of substituting different system components such
as correlator-tracker. The testbed allows human
in the loop simulations. These use cases estab-
lished the requirements for a testbed that can
operate in real operations or in shadow mode
from real operations for human machine interface
development.

The target SOA performance regime is for a
tactical application. This includes soft real-time
and some hard real-time latency goals. This per-
formance regime is not as exacting as messaging
in an embedded system or an avionics bus but
is more restrictive than traditional SOAP/WSDL
web services. The ESB latency must be in tens
of milliseconds (mS)s with guaranteed quality of
service for delivery and latency jitter. Messages
are in the 100 per second to 1000 per second range.
Bandwidths are megabits a second.

The SOA testbed implementation includes tim-
ing agents that are components that hook into
the processing chain in order to measure perfor-
mance. Each of the processing steps in the chain
is implemented by using the mediation service
framework described in Section 4.2. In a produc-
tion scenario, the process chains contain routes
that connect a source of data directly to its proces-
sor and target endpoint. In a testing mode, the
processing chain is modified to include a timing
agent step that extracts one or more correlation
values and signals a central event processor with
the identifier for the step and the correlation

J Intell Robot Syst

details of the message that it is processing. The
central event processor applies a timestamp to
each message it receives and records them for
future analysis. For example, a step in the chain
that consumed Air Track messages and repub-
lished them as Cursor On Target would identify
itself with a unique label. Each of the timing mes-
sages sent from this timing agent would contain
the unique Track ID and the Time of Validity
fields from the Air Track Message that are col-
lectively unique. This data is sufficient to follow
the progress of a single Air Track Message all the
way through the message bus. The use of a central
event processor to provide the timestamp removes
the complexities of keeping multiple clocks in
sync.

Standard analytic packages such as Matlab can
be used to process the data gathered to provide
a detailed look at the performance over a num-
ber of dimensions. Additionally, a real-time event
processor can be configured to interpret start and
end messages from the timing agents and provide
a running view on system performance. A simple
implementation can include a graphical rendering
of the number of messages processed as well as
the min, max, and mean latencies for each sample
period. Such real-time event processors could be
adapted to feed standard monitoring systems such
as Hyperic or OpenNMS.

The testbed SOA is deployed on a pair of Dell
PowerEdge R610 16 core 2.4 GHz Xeon, with
12 G memory running 64 bit Red Hat Enterprise
5 Linux with 2.6.18 SMP kernel. The testbed has
gigabit Ethernet interfaces, and all testing was
performed on a private LAN. Code is written in
Java 6 release 21 by using the Oracle/Sun standard
JVM. JVM garbage collection parameters are set
to homogenize collects at a slight increase in over-
all latency [54].

6 SOA Testbed Performance Evaluation

6.1 SOA Performance Methodology

Performance requirements for a messaging ser-
vice are determined per mission area and service
users. For example, a tracker receiving real-time

sensor reports generally puts stringent require-
ments on message latency and latency distribution
but can easily tolerate some dropped messages,
while a service distributing operator commands
usually needs a very low drop rate but can accom-
modate a much higher latency.

We selected a set of general purpose metrics to
capture sufficient quantitative information about
the messaging service performance that they, to-
gether with standard network performance met-
rics (average and peak bandwidth, etc.), can be
used to evaluate the suitability of the architecture
for specific use cases and mission areas.

For a pair of points A and B in the message
processing path we define the following three
metrics:

Completeness, a number between 0 and 1, is the
fraction of messages passing through A that are
correctly received at B.

Out of order rate, a number between 0 and 1,
is the fraction of messages received at B out of
order.

Latency prof ile, a Probability Density Function
(PDF) of message latency, i.e. the difference be-
tween time of arrival at B and time of depar-
ture from A. In addition to its use for valida-
tion of the end-to-end system the latency profile
can provide valuable insight into performance of
individual architecture elements. For example, a
latency profile can indicate a normal operation of
an event-driven, unstressed task or queued trans-
mission bursts.

6.2 MIT Lincoln Laboratory Testbed SOA
Performance Results

This section describes benchmarks of the Com-
mon Operating Picture service, one of the core
services that enables shared situational awareness.
The performance metrics in the testbed can be
computed on live data or on playback data, and
this evaluation uses the latter in order to achieve
repeatablilty. The baseline scenario centers on an
air picture of the Midatlantic region derived from
a 10 minute FAA dataset. The raw radar contacts
are tracked with a COTS correlator-tracker that
batches the output track data into groups of 2–
27 reports (nominally 15), which are the input to

J Intell Robot Syst

the SOA system. There are nominally between
170 and 220 entities in simultaneous track in the
air picture with a total message rate from all sur-
veillance sources on the order of 40 updates per
second. The XML track message is on the order of
3900 bytes corresponding to 35 bytes message size
in the proprietary vendor binary. If the vendor
specific items are removed, the XML size reduces
to about 1900 bytes. We have obtained XML com-
pression on the order of 40 % by using Efficient
XML protocol [55].

Figure 3 compares the latency characteristics
for the SOA by using several transports and
shows the corresponding latency Probability Den-
sity Function (PDF) profiles. Latency is defined to
be the elapsed time data traverses the SOA, which
includes time in the tracker sidecar to convert
legacy data into XML on the tactical bus, time

0 50 100 150 200

0

0.2

0.4

0.6

Latency Profile (mS)

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

(P
D

F)

udp
amqp
dds
jms

xmpp

XML marshalling (approx)

Transport Min
latency
(mS)

Median
latency
(mS)

95 %
latency
(mS)

Max
latency
(mS)

UDP 4.6 22.6 41.2 55.6
AMQP
RabbmitMQ
2.1.1 (tcp)

6.6 26.9 48.3 93.5

DDS RTI 4.5d
Java, XML as
IDL String,
Default QoS
(udp)

2.9 32.9 69.4 110.

JMS ActiveMQ
5.2.0 (tcp)

5.7 41.6 82.6 222

XMPP OpenFire
3.6.4 (tcp)

8.2 121 225 344

Fig. 3 Latency Distribution for different SOA middleware
bus protocols. The latency includes SOA input mediator
(with encoding of vendor binary format into XML), mes-
sage bus, and SOA client

in the message transport bus, and time through
SOA client. This is essentially the latency cost of
breaking apart a stove-pipe system and inserting
a SOA. A UDP transport in the message bus
represents a lower bound to any IP based trans-
port. The latency profiles for AMQP and DDS
closely match the straight UDP transport. DDS
is implemented in RTI Java DDS using a custom
Apache Camel Connector, and XML documents
are passed as strings.

The study shows that several protocols would
be relevant for SOA messaging with latencies in
the 10’s of mS, if the XML marshalling were
replaced with a binary format. DDS would meet
this requirement and leverage an open standard
as well. Therefore, in the final Army architecture,
IDL would be used for more efficient message
transfer and to enable content filtering. A DDS
“fire and forget” QoS policy is used in which
messages are sent without acknowledgment. A
DDS reliable UDP QoS setting or any content
filtering would likely increase latency. The RTI
Java implementation layers on Java JNI, and we
expect a native DDS C or C++ application to
perform slightly faster. All of the technologies
utilize a central broker except for UDP and RTI
DDS, which has important implications for a fault-
tolerant architecture [56]. These factors would
make DDS the leading choice for messaging in a
high-performance, low latency SOA.

The latency distribution is important as well,
and having a narrow spread is required by some
applications. Near real-time applications also re-
quire a predictable and known latency jitter. The
distributions are narrow with a long thin tail, ex-
cept for the XMPP, where there are a few outliers
due to Java garbage collection. Some benchmark
runs, especially the XMPP ones, exhibited pauses
on the order of 100 mS. Using one of the real-time
Java JVM implementations might be a means to
make the garbage collection more deterministic
and mitigate the occasional latency spikes. This is
under exploration.

We have measured the latency budget of the
SOA elements in the processing chains using the
techniques in Section 5. The bulk of the latency
budget is due to XML marshalling, the bus median
latency is a few mS, and the client latency is
several mS. We have measured the Apache Camel

J Intell Robot Syst

overhead to be small, around 0.5 mS. An addi-
tional transformation of XML from one schema
to another adds on the order of 2 mS to the
latency budget. We measured the completeness
score to be one, and the out of order rate to be
zero. Based on these testbed findings and other
techniques, an architecture that uses DDS is very
attractive [57]. DDS provides options for QoS
settings that are important as one means to im-
plement service specifications. DDS architecture
also provides a number of features for redundancy
and high availability that make it attractive for
mission critical applications, and coupled with its
high-performance characteristics, recommended
by this work.

We plan to evaluate a number of other tech-
niques that might yield even higher SOA per-
formance. These include use of real-time JVM,
network stack parameter tuning, TCP Offload
Engine (TOE). DDS will soon enable pluggable
transports, and use of a higher performance fabric
than IP such as InfiBand [58] is intriguing because
these transports provide more deterministic real-
time behavior than IP.

The testbed contains the capabilities to simu-
late and explore network conditions such as lossy
or slow links, or the effects of routing anomalies.
This framework is called LARIAT [59], and stud-
ies related to SOA execution in a challenging
network environment will he subject of a future
work.

7 Conclusion

We have designed and implemented an open
standard-based SOA for UAS integration in the
NAS. Key functions were delineated, and sim-
ulated operational performance limitations have
been estimated. Plans are to extend this work
by developing and evaluating additional services.
MIT Lincoln Laboratory plans to pursue any nec-
essary standards within relevant standards bodies.

Although SOA presents a number of techni-
cally desirable advantages, certifying a SOA sys-
tem for safety-critical avionics presents a number
of challenges, and to the best of the author’s
knowledge has never been done before. One
method is to certify the reference architecture as

presented. On the other extreme is dispensing
with the architecture entirely and adhering to a
traditional avionics software approach. The solu-
tion is likely some combination of both, accom-
plished by lifting some of the key SOA principles
and applying them using a traditional avionics
software approach. Over time, it would be desir-
able to incrementally move the boundary toward
incorporating more SOA principles. However,
substantial work needs to be done for this to hap-
pen, and a number of questions need to be asked
and answered for this evolution to take place.

One aspect of certification may be more
straightforward with a SOA. The use of a formal
service contracts, with comprehensive interface
specifications, quality of service specifications,
and governance process presents an opportunity
for quantitatively testing and monitoring a ser-
vice at the interface level. This is precedented in
the satellite and spacecraft community through
a component based certification approach [60]
in which simulation and formal modeling of el-
ements with well defined interface specifications
enable reusable components. There are commer-
cial COTS appliances for monitoring service level
agreements of web services, and perhaps these
could be adapted to aid in the monitoring and
verification of the real-time services described. A
testbed provides the opportunity to quantitatively
evaluate a service from reliability and quality of
service level and other aspects relevant to cer-
tification. Future testbed work will include eval-
uating services from a certification standpoint to
order to help establish the current state of matu-
rity. This may help address next steps in incremen-
tally evolving the certification process.

A SOA makes some aspects of certification
more challenging. One set of issues lies around
the use of object oriented methodology in avionics
software. This is addressed in the recent DO-178C
standard, which provides some guidance in ob-
ject oriented avionics software development. Mit-
igating the deterministic scheduling and garbage
collection in Java could be explored by examin-
ing some of the real-time Java implementations
that are commercially available, or code could
be written directly in C++. Java development
tends to incorporate third party libraries, which
is problematic because of open source code and

J Intell Robot Syst

possibly complex secondary dependencies. Miti-
gating this might be explored by in-house library
development, and/or use of C++. Additional cer-
tification processes and standards may need to be
developed for SOA.

We have presented some of the advantages
of SOA principles and have shown how they
can be implemented in a fashion to meet high-
performance requirements. The next step is to
address the certification issues. This architecture
description serves as a guideline for projects that
integrate UAS in the NAS, and we plan to lever-
age these principles in the Army GBSAA project.

Acknowledgements The authors greatly appreciate the
support and assistance provided by Viva Austin, Product
Director, Department of the Army, Unmanned Systems
Airspace Integration Concepts (USAIC).

Open Access This article is distributed under the terms of
the Creative Commons Attribution License which permits
any use, distribution, and reproduction in any medium,
provided the original author(s) and the source are credited.

References

1. U.S. Army UAS Center of Excellence: Eyes of the
Army U.S. Army Roadmap for Unmanned Air-
craft Systems 2010–2035. Report no ATZQ-CDI-C 72
(2010)

2. Peña, N., Scarlatti, D., Ollero, A.: UAVs integra-
tion in the SWIM based architecture for ATM. J.
Intell. Robot. Syst. 54(1), 39–59 (2009). doi:10.1007/
s10846-008-9254-1

3. Batavia, P., Ernst, R., Fisherkeller, K., Gregory, D.,
Hoffman, R., Jennings, A., Romanski, G., Schechter,
B., Hunt, G.: The UAS Control Segment Architecture:
An Open, Agile Development and Acquisition Model
for UAS Ground Control Stations. AUVSI Unmanned
Systems North America (2011)

4. Nelson, E.M.: Open Architecture for the Enterprise,
Part 1: Architectural Principles of Open Architecture.
IBM (2007)

5. Nelson, E.M.: Open Architecture Technical Principles
and Guidelines, version 1.5.8. IBM (2008)

6. Birman, K., Hillman, R., Pleisch, S.: Building net-
centric military applications over service oriented ar-
chitectures. Proc. SPIE 5820, 255 (2005). doi:10.1117/
12.605149

7. Davis, C., Flavin, J., Boisvert, R., Cochran, K.,
Cohen, K., Hall, T., Hebert, L., Lind, A.-M.: Enhanced
regional situation awareness. Linc. Lab. J. 16(2),

355–380 (2007). http://www.ll.mit.edu/publication/
journal/pdf/vol16_no2/16_2_07Davis.pdf. Accessed 23
Sept 2011

8. Rejto, S.: Radar open systems architecture and ap-
plications. In: The Record of the IEEE 2000 Inter-
national Radar Conference, 2000, pp. 654–659 (2000).
doi:10.1109/RADAR.2000.851911

9. Evans, J., Ducot, E.: Corridor integrated weather
system. Linc. Lab. J. 16(1), 59–80 (2006). http://
www.ll.mit.edu/publications/journal/pdf/vol16.../16_1_
4EvansDucot.pdf. Accessed 23 Sept 2011

10. Moser, W.: Design and implementation of the TFDM
information management architecture. In: Integrated
Communications Navigation and Surveillance Con-
ference (ICNS), 2010, pp. 1–27, 11–13 May 2010.
doi:10.1109/ICNSURV.2010.5503304

11. MIT Lincoln Laboratory: Extended Space Sensors
Architecture. Lincoln Laboratory Tech Notes (2009).
[online] http://www.ll.mit.edu/publications/technotes/
TechNote_ESSA.pdf. Accessed Sept 2010

12. Vidan, A.: Lincoln Laboratory distributed disaster
response system. Lincoln Laboratory Tech Notes,
[online] http://www.ll.mit.edu/publications/technotes/
TechNote_LDDRS.pdf. Accessed 23 Sept 2011

13. Garces-Erice, L.: Building an enterprise service bus
for real-time SOA: a messaging middleware stack.
In: 33rd Annual IEEE International Computer Soft-
ware and Applications Conference, 2009. COMPSAC
’09, vol. 2, pp. 79–84, 20–24 July 2009. doi:10.1109/
COMPSAC.2009.119

14. Panahi, M., Nie, W., Lin, K.-J.: A framework
for real-time service-oriented architecture. In: IEEE
Conference on Commerce and Enterprise Comput-
ing, 2009. CEC ’09, pp. 460–467, 20–23 July 2009.
doi:10.1109/CEC.2009.78

15. Garcia-Valls, M., Rodriguez-Lopez, I., Fernandez-
Villar, L., Estevez-Ayres, I., Basanta-Val, P.: To-
wards a middleware architecture for deterministic
reconfiguration of service-based networked applica-
tions. In: 2010 IEEE Conference on Emerging Tech-
nologies and Factory Automation (ETFA), pp. 1–4,
13–16 Sept. 2010. doi:10.1109/ETFA.2010.5641071

16. Fattah, A.: Enterprise reference architecture. In: 22nd
Enterprise Architecture Practitioners Conference,
London, UK. http://docs.oasis-open.org/soa-rm/soa-ra/
v1.0/soa-ra-cd-02.pdf (2009). Accessed 23 Sept 2011

17. Josuttis, N.: SOA in Practice. O’Reilly (2007)
18. [online] http://www.json.org/xml.html. Accessed 23

Sept 2011
19. [online] https://acc.dau.mil/oa. Accessed 23 Sept 2011
20. [online] https://acc.dau.mil/CommunityBrowser.aspx?

id=121180&lang=en-US. Accessed 23 Sept 2011
21. [online] http://UAV-c2-initiative.mil. Accessed 23 Sept

2011
22. [online] http://www.opengeospatial.org/standards/sps.

Accessed 23 Sept 2011
23. [online] http://www.ucsarchitecture.org/page/home.

Accessed 23 Sept 2011
24. [online] http://cot.mitre.org/. Accessed 23 Sept 2011
25. [online] http://www.eurocontrol.int/asterix/public/

standard_page/documents.html. Accessed 23 Sept 2011

J Intell Robot Syst

26. [online] https://faaco.faa.gov/?ref=9088. Accessed 23
Sept 2011

27. [online] http://www.nato.int/docu/standard.htm. Ac-
cessed 23 Sept 2011

28. [online] https://wiki.ucar.edu/display/NNEWD/WXXM.
Accessed 23 Sept 2011

29. [online] http://www.aixm.aero/public/standard_page/
concepts_standards.html. Accessed 23 Sept 2011

30. [online] http://dmtf.org/standards/cim. Accessed 23
Sept 2011

31. [online] http://www.niem.gov/TechnicalDocuments.php.
Accessed 23 Sept 2011

32. [online] http://www.open-mpi.org/. Accessed 23 Sept
2011

33. Information Assurance Technology Analysis Center:
Software security assurance. In: State-of-the-Art Re-
port (SOAR) (2007)

34. Ibrahim, L., Jarzombek, J., Ashford, M., Bate, R.,
Croll, P., Horn, M., LaBruyere, L., Wells, C.: Safety
and Security Extensions for Integrated Capability Ma-
turity Models. FAA (2004)

35. Scott, A.D., Clay, P., Masone, M.: Certification and
accreditation of SOA implementations: programmatic
rules for the DoD. CrossTalk: The Journal of Defense
Software Engineering 22(7), 19–24 (2009). http://www.
crosstalkonline.org/storage/issue-archives/2009/.../200911-
Scott.pdf. Accessed 23 Sept 2011

36. Sharp, D., Bell, A., Gold, J., Gibbar, K., Gvillo, D.,
Knight, V., Murphy, K., Roll, W., Sampigethaya, R.,
Santhanam, V., Weismuller, S.: Challenges and solu-
tions for embedded and networked aerospace software
systems. Proc. IEEE 98(4), 621–634 (2010). doi:10.
1109/JPROC.2009.2039631

37. Brennan, J.J. (ed.): Information Assurance for SOA.
MITRE, Bedford (2010)

38. [online] http://cio-nii.defense.gov/sites/dodaf20/. Ac-
cessed 23 Sept 2011

39. [online] http://everware-cbdi.com/cbdi-forum. Accessed
23 Sept 2011

40. Sprott, D.: The CBDI-SAE Reference Framework in
2010. CBDI Journal. http://everware-cbdi.com/cache/
downloads/6o5n1t4q4iw4os0ckg8w4ws4c/Journal2010-
09.pdf (2010). Accessed 23 Sept 2011

41. CBDI template, pp. 4–17. [online] http://everware-
cbdi.com/rss-template. Accessed 23 July 2012

42. DHS Service Oriented Architecture—Technical Frame-
work, version 1 (2007). Section 8 and Appendix D

43. Correa, T., Becker, L.B., Farines, J.-M., Bodeveix,
J.-P., Filali, M., Vernadat, F.: Supporting the design
of safety critical systems using AADL. In: Proceed-
ings of the 2010 15th IEEE International Confer-
ence on Engineering of Complex Computer Systems
(ICECCS ’10), pp. 331–336. IEEE Computer Society,
Washington, DC (2010). doi:10.1109/ICECCS.2010.56

44. Gregson, K.: Cross-domain ISR maritime awareness
demonstration. Paper presented at HPEC Conference,
Lexington, MA (2009)

45. [online] http://www.disa.mil/nces. Accessed 23 Sept
2011

46. [online] http://cio-nii.defense.gov/sites/coi/Training/DT-
07-NCES-Capabilities.ppt. Accessed 23 Sept 2011

47. [online] http://www.w3.org/TR/rdf-sparql-query/. Ac-
cessed 23 Sept 2011

48. Konieczny, E., Ljungberg, M.: Semantic framework for
automatic resource brokering in distributed govern-
ment systems. In: Semantic Technology Conference
(2010)

49. Van Hook, D., Ljungberg, M., Aubin, E., Shaw, R.,
Ford, M., Konieczny, E., Lee, D.H., Brown, S.T. IV:
Resource brokering service: timely and efficient infor-
mation resource allocation. In: Defense Transforma-
tion and Net-Centric Systems, SPIE, vol. 7707 (2010).
doi:10.1117/12.850588

50. Ford, M., Ljungberg, M., Van Hook, D., Shaw, R.,
Aubin, E.: Resource Brokering Service: Automatic
Plan Composition and Execution. MILCOM (2010).
doi:10.1109/MILCOM.2010.5680336

51. [online] http://metadata.dod.mil/mdr/irs/DDMS/. Ac-
cessed 23 Sept 2011

52. Viggh, H., Weed, C., Chan, M.: Composable Appli-
cations Using Service Encapsulation (CAUSE). MIL-
COM (2010). doi:10.1109/MILCOM.2010.5680324

53. [online] https://kepler-project.org. Accessed 23 Sept
2011

54. [online] http://www.oracle.com/technetwork/java/
javase/tech/vmoptions-jsp-140102.html. Accessed 23
Sept 2011

55. Efficient XML Interchange (EXI) Format 1.0. World
Wide Web Consortium, Working Draft (2008)

56. [online] http://www.rti.com/whitepapers/Platform_for_
Reconfigurable_UAS.pdf. Accessed 23 Sept 2011

57. Xiong, M., Parsons, J., Edmondson, J., Nguyen, H.,
Schmidt, D.: Evaluating Technologies for Tactical
Information Management in Net-Centric Systems.
Vanderbilt University (2007). doi:10.1117/12.719679

58. http://www.infinibandta.org. Accessed 23 Sept 2011
59. Rossey, L.M., Cunningham, R.K., Fried, D.J.,

Rabek, J.C., Lippmann, R.P., Haines, J.W., Zissman,
M.A.: LARIAT: Lincoln adaptable real-time infor-
mation assurance testbed. In: IEEE Aerospace Con-
ference Proceedings (2002). doi:10.1109/AERO.2002.
1036158

60. Weiss, A., Ong, E.C., Levinson, N.G.: Reusable
specification components for model-driven develop-
ment. In: Proceedings of the International Conference
on System Engineering (INCOSE ’03) (2003)

61. [online] http://nesipublic.spawar.navy.mil/nesix/Frames.
Accessed 23 Sept 2011

	A Reference Software Architecture to Support Unmanned Aircraft Integration in the National Airspace System
	Abstract
	Introduction

	A Reference Software Architecture to Support Unmanned Aircraft Integration in the National Airspace System
	Abstract
	Background
	Software Architecture Design
	Description of SOA Components
	Core Services and the Net-Centric Toolkit
	High-Performance Tactical Messaging Bus
	Registration Service
	Resource Brokering Framework
	Federated Search Service
	Security
	Health and Integrity Framework and Auditing
	Archive/Playback Service
	Composable Applications

	SOA Sidecars and Mediation Services
	Services Specific to Air Domain
	Track Fusion Service and Track Classification Service
	Flight Association Service
	Track Association Service and Common Operating Picture
	Sense and Awareness (SAA) Service

	MIT Lincoln Laboratory SOA Testbed Implementation
	SOA Testbed Performance Evaluation
	SOA Performance Methodology
	MIT Lincoln Laboratory Testbed SOA Performance Results

	Conclusion
	References

